bridging the gap

Research Informing Policies \& Practices

Exploring How Prices and Advertisements for Soda in Food Stores Influence Adolescents' Dietary Behavior

Lisa M. Powell, PhD (co-authors: Zeynep Isgor, Frank Chaloupka, Lloyd Johnston) Health Policy and Administration, School of Public Health
University of IIIInois at Chicago
Obesity Society Meeting
Atlanta, GA
November, 2013

Presenter Disclosures

No relationships to disclose.

Background

bridging the gap

Daily SSB Consumption among Children \& Adolescents, 1999-2008

Source: National Health and Nutrition Examination Survey (NHANES) 1999-2008, author's own calculations
bridging the gap

Daily U.S. Sugar-Sweetened Beverage Consumption Calories, by Age 2007-2008

bridging the gap

Pricing: Evidence

Mean Estimates of Price Elasticity of Demand for SSBs U.S. studies from 2007-2012

Beverage Categories	Mean Price Elasticity Estimate
SSBs Overalla	-1.21
SSBs	-1.08
Regular Carbonated Soft Drinks	-1.25
Sports Drinks	-2.44
Fruit Drinks	-1.41
Soft Drinks (reg+diet)	-0.86

Notes: ${ }^{\text {a }}$ Overall mean (weighted mean based on SSB consumption shares) SSB elasticity estimate based on the estimates from the aggregated SSB category and the estimates from the various disaggregated (regular carbonated soda, sports drinks, and fruit drinks) categories within the beverage demand system.

Data and Methods

bridging the gap

Individual Level Data

Monitoring the Future Study

- Study began in 1975
- Nationally representative sample of $8^{\text {th }}, 10^{\text {th }}$ and $12^{\text {th }}$ grade students
- Starting in 2010, study asks students about their soda consumption:
- How many (if any) 12-ounce cans or bottles (or the equivalent) of regular (non-diet) soft drinks do you drink per day, on average?
- None, Less than 1, One, Two, Three, Four, Five or six, 7 or more

BTG - Community Obesity Measures Study

- Collection of local policy and environmental data in a national sample of catchment areas around MTF schools
- Systematic observation by trained data collectors
$>$ Food stores
> Fast food restaurants
> Parks
> Physical activity facilities
> Street segments
- Community sample defined by the catchment areas for schools participating in the University of Michigan's Monitoring the Future study
- Data collected in 154 communities in 2010, 157 communities in 2011, and 160 communities in 2012.
bridging the gap

BTG-COMP Food Store Sample

- Food store sampling frame developed from two commercial sources
> Dun \& Bradstreet
> InfoUSA
- Phone screening conducted to confirm business name, location, and eligibility/classification
- Sampling frame supplemented with food store outlets discovered in the field
- Goals for \# of field-discovered businesses set based on sensitivity rates from a field validation study

Food Store Observation Form

- Types of stores
- Store features/amenities
- Availability of food/beverage items
- Pricing of food/beverage items
- Marketing and signage

F．BEVERAGES													
	$\begin{aligned} & \text { IFF1 = NO, } \\ & \text { SKIP F2-F6 } \end{aligned}$	F1． AVAILABLE		F2．BRAND If None，SKIP F3－F6		F3． QTY	F4．PACKAGE SIZE If None，SKIP F5－F6		F5．CURRENT PRICE If 77.77 （DK），SKIP F6	F6．PRICE TYPE			
		No	YES			REG			SPECIAL				
	a．Orange Juice， 100\％juice	\square 。	$\square \square_{1}$	Minute Maid	$\square{ }^{1}$			59－6402		$\square 1$	\＄	$\square{ }^{1}$	$\square{ }^{2}$
				Tropicana	$\square \square^{2}$		89 oz	$\square \square_{2}$					
				None of above	－8		None of above	口 ${ }^{8}$					
	b．Juice Drink， ＜50\％juice	\square－	$\square 1$	Minute Maid	$\begin{aligned} & \square_{1} \\ & \square_{2} \\ & \square_{8} \end{aligned}$		59－6402	\square^{1}	\＄	$\square{ }^{1}$	$\square \square^{2}$		
				Tropicana			12802	$\square \square^{2}$					
				None of above			None of above	$\square 8$					
	c．Juice Box／Pouch $\leq 10 \%$ juice	$\square 0$	$\square 1$	Hi－C	$\square 1$		Box of 10	$\square{ }^{1}$	\＄	$\square{ }^{1}$	$\square{ }^{2}$		
				Capri Sun	$\square \square^{2}$		Case of 40	$\square \square^{2}$					
				None of above	\square^{8}		None of above	口8					
	d．Soda，regular	\square－	$\square 1$	Coca－Cola	$\begin{aligned} & \square_{1} \\ & \square_{2} \\ & \square_{8} \end{aligned}$		2 Liter	$\square{ }^{1}$		$\square{ }^{1}$	$\square{ }^{2}$		
				Pepsi			12 can case	$\square \square_{2}$					
				None of above			None of above	$\square 8$					
	e．Soda，diet	$\square 0$	$\square 1$	Coca－Cola	$\begin{aligned} & \square_{1} \\ & \square_{2} \\ & \square_{8} \\ & \hline \end{aligned}$		2 Liter	$\square{ }^{1}$		$\square{ }^{1}$	$\square{ }^{2}$		
				Pepsi			12 can case	\square^{2}					
				None of above			None of above	$\square 8$					
	f．Soda，least expensive regular cola	If NO SOdA AVAILABLE，SKIP ROW					2 Liter	$\square{ }^{1}$		$\square 1$	$\square \square^{2}$		
							12 can case	$\square \square^{2}$					
							None of above	$\square 8$					
	g．Orange Juice， 100\％juice	\square－	\square^{1}	Minute Maid	$\square 1$		15.202	$\square{ }^{1}$	\＄	$\square 1$	$\square{ }^{2}$		
				Tropicana	\square^{2}		1202	$\square{ }^{2}$					
				None of above	口8		None of above	$\square 8$					
	h．Juice Drink， ＜50\％juice	$\square 0$	$\square 1$	Minute Maid	$\begin{aligned} & \square_{1} \\ & \square_{2} \\ & \square_{8} \\ & \hline \end{aligned}$		15.202	\square^{1}	\＄	$\square{ }^{1}$	$\square{ }^{2}$		
				Tropicana			1202	\square^{2}					
				None of above			None of above	口 8					
	i．Soda，regular	$\square 0$	$\square 1$	Coca－Cola	$\begin{aligned} & \square_{1}^{1} \\ & \square^{2} \\ & \square^{8} \end{aligned}$		2002	$\square 1$	\＄ \qquad Asked？\square n \square	$\square{ }^{1}$	$\square{ }^{2}$		
				Pepsi			1202	$\square \square^{2}$					
				None of above			None of above	$\square 8$					
	j．Soda，diet	$\square 0$	\square^{1}	Coca－Cola	$\begin{aligned} & \square_{1} \\ & \square_{2} \\ & \square_{8} \end{aligned}$		20 oz	$\square{ }^{1}$	\＄ \qquad ． \qquad	\square^{1}	$\square{ }^{2}$		
				Pepsi			12 Oz	$\square \square^{2}$					
				None of above			None of above	$\square 8$					
	k．Energy Drink， regular	$\square 0$	$\square 1$	Red Bull	$\square 1$		8 －8．5 oz	$\square{ }^{1}$	\＄	$\square 1$	$\square{ }^{2}$		
				Monster	\square^{2}		1602	$\square{ }^{2}$					
				Rockstar	$\square \square^{3}$		None of above	$\square 8$					
				None of above	－8								
	I．Isotonic Sports Drink，regular	$\square 0$	$\square 1$	Gatorade	$\square \square^{1}$		20 oz	$\square{ }^{1}$		$\square 1$	$\square{ }^{2}$		
				Powerade	\square^{2}		3202	\square_{2}					
				None of above	$\square 8$		None of above	$\square 8$					
	m．Enhanced Water， regular	$\square 0$	$\square 1$	Vitamin Water	$\square 1$		20 oz	$\square{ }^{1}$		$\square{ }^{1}$	$\square{ }^{2}$		
				Sobe Life	\square^{2}		16－17 oz	$\square \square^{2}$					
				Propel	\square^{\square}		None of above	－8					
				None of above	口8								
	n．Bottled Water， plain	\square－	$\square 1$	Dasani	$\square{ }^{1}$		2002	$\square{ }^{1}$	\$	$\square 1$	$\square \square_{2}$		
				Aquafina	$\square \square^{2}$		2402	$\square \square^{2}$					
				None of above	$\square 8$		None of above	口8					
	Page 5 of 7	Copyright © 2012 The Board of Trustees of the University of illinois								9835584350			

bridging the gap

bridging the gap
Page 7 of 7

Key Exposure Measures

- Community exposure measures were weighted mean catchmentlevel food store observations.
- Key measures included:
- Price of regular individual size (20 ounces) soda (i.e. Coca-cola) in \$
- Number of regular soda ads found on building exterior and property.

Estimation Models

- Regular Soda Consumption = f (price/ads, gender, grade, race, student income, student hours of work, mother hours of work, mother education, region, neighborhood income, year indicators)
- Estimations Models:

1. Ordinary least squares (OLS) consumption models
2. Probit consumption prevalence models
3. Probit heavy consumption prevalence models

- Estimation of partially- and fully-adjusted models and by subpopulations.

bridging the gap

Results

bridging the gap

Summary Statistics: Soda Consumption Outcomes

	Number of Drinks Per Day	Consumption Prevalence	Heavy Consumption Prevalence
Full Sample ($\mathrm{n}=12,357$)	1.17	73.5\%	27.6\%
Female ($\mathrm{n}=6,311$)	1.02	69.4\%	23.3\%
Male ($\mathrm{n}=6,046$)	1.33	77.8\%	32.1\%
$8^{\text {th }}$ Grade ($\mathrm{n}=5,129$)	1.29	77.5\%	30.9\%
$10^{\text {th }}$ Grade ($\mathrm{n}=5,118$)	1.10	71.3\%	26.0\%
$12^{\text {th }}$ Grade ($\mathrm{n}=2,110$)	1.06	70.4\%	24.6\%
White ($\mathrm{n}=7,679$)	1.10	72.6\%	25.5\%
Black ($\mathrm{n}=1,222$)	1.58	78.7\%	42.2\%
Hispanic ($\mathrm{n}=1,749$)	1.23	75.4\%	29.8\%
Other race ($\mathrm{n}=1,707$)	1.10	71.8\%	24.3\%
Mother no college ($n=3,004$)	1.48	78.7\%	37.0\%
Mother some college or more ($n=9,353$)	1.06	71.8\%	24.4\%
Live with one parents ($\mathrm{n}=2,838$)	1.38	75.2\%	34.9\%
Live with both parent ($\mathrm{n}=9,519$)	1.10	73.0\%	25.4\%

bridging the gap

Soda Consumption (Cans/day), by Year

bridging the gap

Soda and Heavy Soda Consumption Prevalence, by Year

bridging the gap

Summary Statistics: Key Exposure and Selected Control Variables

		Mean
	Variables of Interest	
	Price of 20oz regular soda (\$)	1.56
	Regular Soda Exterior Beverage Ads	1.02
	Selected Control Variables	
	Age (y)	15.22
	White (\%)	62.34
	Black (\%)	10.10
	Hispanic (\%)	14.26
	Other race (\%)	13.30
	Mother some college or more (\%)	74.68
	Live with both parents (\%)	76.41
	Youth income (\$/wk)	38.72
	Youth hours worked per week	3.40
	Mother PT job (\%)	17.19
	Mother FT job (\%)	62.88

Regression Results for Price on Consumption

	Number of Drinks Per Day	Consumption Prevalence	Heavy Consumption Prevalence
Variable of Interest			
Price of $200 z$ regular soda	$\begin{aligned} & -0.329^{\star *} \\ & {[-0.44]} \end{aligned}$	$\begin{aligned} & -0.114^{\star *} \\ & {[-0.24]} \end{aligned}$	$\begin{gathered} -0.139^{* *} \\ {[-0.84]} \end{gathered}$
Selected Control Variables			
Male	0.273***	$0.081^{* * *}$	0.085***
$10^{\text {th }}$ Grade	-0.183***	-0.061***	$-0.044^{* * *}$
$12^{\text {th }}$ Grade	-0.373***	-0.085***	-0.089***
Black	$0.221^{* * *}$	0.027*	$0.085^{* * *}$
Hispanic	0.027	0.011	0.017
Other race	0.053	0.004	0.006
Median Household Income	-0.072***	-0.011***	$-0.027^{* * *}$
Mother Some College or More	-0.294***	-0.053***	-0.087***
${ }^{*} \mathrm{p}<0.10,{ }^{* *} \mathrm{p}<0.05,{ }^{* * * *} \mathrm{p}<0.01$; [Elasticity] bridging the gap			

Price Elasticity of Consumption, Alternative Model Specifications

	Partially- Adjusted Model 1	Partially- Adjusted Model 2	Fully- Adjusted Model
Number of Drinks Per Day	$-1.77^{* * *}$	$-0.87^{* * *}$	$-0.44^{* *}$
Consumption Prevalence	$-0.57^{* * *}$	$-0.33^{\star * *}$	$-0.24^{* *}$
Heavy Consumption Prevalence	$-2.72^{* * *}$	$-1.48^{* * *}$	$-0.84^{* *}$

$$
{ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01
$$

Price Elasticity of Consumption, by subpopulations

	Number of Drinks Per Day	Consumption Prevalence	Heavy Consumption Prevalence
Full Sample	-0.44**	-0.24 **	-0.84**
By Gender			
Female	-0.67**	-0.47***	-0.65
Male	-0.24	0.00	-0.98**
By Grade			
Middle School	-0.10	-0.21*	-0.37
High School	-0.77**	-0.30**	-1.34**
By Race			
White	-0.55**	$-0.28{ }^{\text {** }}$	-0.98**
Black	-0.40	0.11	-1.33*
Hispanic	-0.24	-0.22	-0.76
By Mother's Education			
Mother no college	-0.38	-0.12	-0.59
Mother some college or more	-0.47**	-0.30**	-1.02***
bridging the gap		${ }^{*} p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$	

Regression Results for Regular Soda Advertisements on Consumption

	Number of Drinks Per Day	Consumption Prevalence	Heavy Consumption Prevalence
Variables of Interest			
Regular Soda Food Store Beverage Ads	$\mathbf{0 . 0 1 7}$	$\mathbf{- 0 . 0 0 1}$	$\mathbf{0 . 0 0 9 *}$
	$[0.02]$	$[-0.00]$	$[0.05]$

bridging the gap

Impact of Regular Soda Advertisements on Heavy Consumption, Elasticities by Subpopulations

		Heavy Consumption
	Full Sample	0.05*
	By Gender	
	Female	0.06
	Male	0.05
	By Grade	
	Middle School	0.09**
	High School	0.02
	By Race	
	White	0.08**
	Black	0.13**
	Hispanic	-0.08
	By Mother's Education	
	Mother no college	0.02
	Mother some college or more	0.08**
bridging the gap		p<0.05, *** p <0.01

Elasticity for Price and Advertisement Data on Consumption

	Number of Drinks Per Day	Consumption Prevalence	Heavy Consumption Prevalence
Variables of Interest			
Price of 20oz regular soda	$-0.44^{\star *}$	$-0.24^{\star *}$	$-0.84^{\star *}$
Regular Soda Food Store Beverage Ads	0.02	-0.00	0.05^{\star}

* $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$
bridging the gap

Summary of Results

- Preliminary results show significant associations between regular soda prices and consumption outcomes. A 10\% increase in price is associated with 4.4\% lower consumption, 2.4% lower consumption prevalence, and 8.4% lower heavy consumption prevalence.
- Future estimation: Count models of consumption and associations with body weight.
-Less consistent results found for associations between exterior regular soda ads and consumption; although significant for some populations (middle school, white, black, higher mother's education).

bridging the gap

Policy Implications

Tax Design, Revenue, Current Taxes, and Proposed Taxes

Policy Landscape - Taxes

Food taxes have not generally been introduced with the aim of modifying consumption behavior as they have been used in other public health areas such as tobacco.

Food taxes are currently imposed on selected categories of food such as soft drinks, candy and snacks in grocery stores and vending machines but at quite low tax rates.

bridging the gap

State Sales Taxes on Regular, Sugar-Sweetened Beverages, as of July 1, 2012

bridging tne gap
Data Source: Bridging the Gap Program, University of Illinois at Chicago, 2012

Sales Taxes on Selected Beverages, All States (as of July 1, 2012)

Note: Three states also impose a mandatory statewide local tax that is not reflected in the above data: CA (1\%), UT (1.25\%), VA (1\%).
bridging the gap

Sales Taxes on Selected Beverages, Taxing States (as of July 1, 2012)

Note: Three states also impose a mandatory statewide local tax that is not reflected in the above data: CA (1\%), UT (1.25\%), VA (1\%).
bridging the gap

Selected Examples of State SSB-related Legislative Activity 2011/12

California (\$0.01/ounce tax on distributors of SSBs; revenue to create Children's Health Promotion
Fund) - Failed to pass 3/1/2012
California (to authorize any county or city to propose to voters a \$0.01/ounce excise tax on SSBs)

- Failed to pass 3/1/2012

Hawaii (7 Bills introduced from 2011 through 2012) - All Died in Committee or Failed to pass
Illinois (\$0.01/ounce tax on SSBs; revenue to create Illinois Health Promotion Fund)
Nebraska (sales tax on SSBs; revenue to Obesity Prevention Fund) - Postponed 4/23/2012
Rhode Island (\$0.01/ounce, revenue for programs to reduce obesity) - Held for study 5/5/2011
Tennessee (\$0.01/ounce tax on bottled SSBs in exchange for 1% reduction in state sales tax on food - referred to as ‘swap legislation") - Died in Committee 9/12/2012

Vermont (\$0.01/ounce tax on SSBs; revenue to create Vermont oral health improvement fund) Died in Committee 9/14/2012

West Virginia (series of taxes on bottled soft drinks, syrups and dry mixtures; revenue for state parks) - Died in Committee 7/8/2011

Source: Rudd Center for Food Policy \& Obesity, Legislation Database

bridging the gap

Global Beverage Taxes

Several countries recently adopted beverage taxes as part of effort to curb obesity

- Denmark: DKK 1.58/litre (US\$0.28) for beverages with >0.5 grams of sugar/100 ml; DKK 0.57 (US\$0.10) for <0.5 grams $/ \mathrm{ml}$
- France: €7.16/100 litres (US\$9.39) on beverages with added sugars and artificially sweetened beverages
- Hungary: 5 forints/litre (\$0.024) on soft drinks; 250 forints ($\$ 1.18$) on energy drinks; 100 forints on pre-packaged sugar-sweetened products (>25-40g added sugar per 100 g ; varies by product)
- Nauru: 30% ad valorem tax on prices of imported carbonated soft drinks, cordials, flavored milks, and drink mixes containing sugar

Tax Policy Design Implications

* Issues of applicability to SNAP (food stamp) purchases
* Excise tax rather than a sales tax
$>$ Incorporated at shelf price - more apparent to consumers
>Applicable regardless of where items are sold
>Applied on a per unit basis rather than a function of price so that quantity discounts are still taxed. Issue of zero marginal cost for free refills.
$>$ Reduces incentives to switch to cheaper brands
>Disadvantage: Need to be adjusted for inflation
* Dedication of tax revenue to nutrition and physical activity programs

SSB Taxation \& Revenues

Revenue generating potential of tax is considerable

- SSB Tax calculator at:
http://www.yaleruddcenter.org/sodatax.aspx
- Tax of one cent per ounce could generate:
\$13.1 billion nationally in 2013
- Tax of one cent per ounce in Georgia $\$ 450.9$ million in 2013
- Earmarking tax revenues for obesity prevention efforts would add to impact of tax

Example of PSA in New York City: Pour on the Pounds Campaign.

bridging the gap

For more information: www.bridgingthegapresearch.org

Follow us on Twitter! @BTGresearch

```
bridging the gap
```


Lisa Powell powell@uic.edu

bridging the gap

